
 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

1	

Software	Development	Done	Right:	
The	Foundations	a	CTO	Cannot	Ignore	

	
This	short	booklet	introduces	a	minimum	set	of	practices	for	software	development	and	IT	

departments	that	you	should	never	neglect	in	professional	software	development.	
You’ll	find	also	references	to	conclusive	scientific	research	studies,	industry	opinion,	

suggested	reading	material,	and	suggested	actions	to	improve	in	those	areas.	

Table	of	Contents	

GOOD	DECISION	MAKING	AND	10X	VARIATION	IN	PRODUCTIVITY	 2	

SOFTWARE	DESIGN	 3	
1)	SOFTWARE	DESIGN:	EFFECTIVENESS	OF	MODULARISATION	AND	DESIGN	PATTERNS	 4	
2)	ORGANISATIONS	AND	TEAM	STRUCTURE:	CONWAY’S	COROLLARY	 6	

VERSION-CONTROL	SYSTEMS	AND	BUILD	AUTOMATION	 9	

3)	SOURCE-CODE	REPOSITORY	A.K.A.	A	VERSION-CONTROL	SYSTEM	 10	
4)	BUILD	AUTOMATION	 11	

ITERATIVE	DEVELOPMENT	 13	

5)	ITERATIVE	DEVELOPMENT	 13	

TEST	AND	DELIVERY	AUTOMATION	AND	CONTINUOUS	INTEGRATION:	CURRENT	TRENDS	 15	

6)	TEST	AUTOMATION	 15	
7)	DEPLOYMENT	AUTOMATION	 16	
8)	CONTINUOUS	INTEGRATION	 18	

CONTINUOUS	DELIVERY	AND	INFRASTRUCTURE	AS	CODE:	CUTTING-EDGE	TRENDS	 21	

9)	CONTINUOUS	DELIVERY	AND	DEVOPS	 21	
10)	INFRASTRUCTURE	AS	CODE	 23	

APPENDIX	1:	GOOD	DECISION	MAKING	AND	10X	VARIATIONS	IN	PRODUCTIVITY	(REFERENCES)	 24	

APPENDIX	2:	SOFTWARE	DESIGN,	MODULARISATION	AND	DESIGN	PATTERNS	(REFERENCES)	 26	

APPENDIX	3:	ORGANISATIONS,	TEAM	STRUCTURE,	AND	CONWAY’S	COROLLARY	(REFERENCES)	 27	

ABOUT	THE	AUTHOR	 28	

	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

2	

Everyday,	CTOs	make	IT	decisions	and	chart	strategic	directions	in	turbulent	and	uncertain	
circumstances:	
	

• New	technologies	emerge	every	three	to	six	months	and	a	new	paradigm	shift	
happens	every	year	or	two.	

• Every	new	generation	of	IT	professional	wants	to	start	from	scratch,	ignoring	the	
past	and	creating	new	trends.	

	
What	yesterday	was	true,	right,	and	good,	today	may	seem	wrong,	disputable,	or	
controversial.	Which	certainties	can	a	CTO	rely	on?	
	
The	following	sections	document	fundamental	building	blocks	of	software	development	
done	right:	a	list	of	practices	whose	effectiveness	has	been	scientifically	demonstrated,	
practices	generally	accepted	by	the	industry	as	suggested,	trending,	and	cutting	edge.	
	
Each	section,	for	each	practice,	references	conclusive	scientific	research,	industry	opinions,	
suggested	reading	material,	information	for	assessing	if	practice	is	properly	in	place	or	not,	a	
short	description	of	what	good	looks	like,	and	suggestions	for	next	actions.	
	
Quoted	scientific	studies	and	experiments	and	the	conclusiveness	of	evidence	are	based	on	
work	published	in	this	book,	highly	recommend	to	CTOs:	
	
[1]	Making	Software:	What	Really	Works,	and	Why	We	Believe	It.	Andy	Oram	and	Greg	
Wilson,	eds.	(O'Reilly	Media,	2010).	
	
Generally	accepted	practices	in	the	IT	industry	are	extracted	from:	
	
[2]	Facts	and	Fallacies	of	Software	Engineering.	Robert	Glass	(Addison-Wesley	Professional,	
2002)	
[3]	“The	Joel	Test:	12	Steps	to	Better	Code”.	Joel	Spolsky	(Joel	on	Software,	2000)	
	
But	first,	here	are	a	few	words	about	why	the	fundamental	building	blocks	of	software	
development	done	right	are	relevant	and	have	a	huge	impact.	

Good	decision	making	and	10x	variation	in	productivity	
	
Decisions	that	CTOs	make,	on	technologies,	hiring,	and	ways	of	working,	can	have	a	10x	
impact	on	productivity,	for	better	or	for	worse.	This	is	the	potential	difference	between	
good	decisions	and	bad	decisions.	
	
Evidence	from	research	studies	and	empirical	experiments	support	the	general	claim	of	
order-of-magnitude	differences	(from	5x	to	28x)	in	productivity	and	quality	among	different	
programmers	and	among	different	teams	(from	3x	to	10x),	and	this	applies	to	organisations	
too.	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

3	

An	example	that	supports	the	previous	claim	is	a	study	based	on	data	released	by	Lotus	and	
Microsoft	on	the	development	of	two	similar	products:	Lotus	123	version	3	and	Microsoft	
Excel	3.0.	The	Excel	team	members	were	8x	more	productive	than	Lotus	team	members.	
	
There	is	also	plenty	of	anecdotal	support,	for	example	from	Boeing	Company	in	the	mid-
1980s,	when	a	single	programmer	replaced	a	team	of	80	and	completed	the	delivery	on	
time.		
	
I	also	directly	observed	the	difference	in	productivity	in	June	2015	as	part	of	a	due	diligence.	
I	observed	two	organisations	develop	and	support	similar	products	to	serve	similar	markets	
with	similar	numbers	of	customers.	One	organisation	was	able	to	get	the	job	done	with	30	
developers	while	the	other	employed	300	developers.	The	first	organisation	produced	
better	internal	quality	and	better	quality	in	use	of	the	product.	My	observation	supports	the	
claim	of	10x	variation	in	productivity.	(For	confidentiality	reasons,	I	cannot	mention	the	
companies	involved.)	
	
The	following	paragraphs	on	software-development	practices	can	test	the	effectiveness	of	a	
CTO’s	decision	making	since	nine	out	of	ten	fall	completely	within	the	authority	and	
responsibility	of	a	CTO.	
	
Suggested	readings:	
	
	[1]	“Chapter	30:	What	Does	10x	Mean?	Measuring	Variations	in	Programmer	Productivity”	
	[2]	Fact	1	and	Fact	2	in	“Chapter	1:	About	Management”	
	
Research	studies	and	supporting	evidence:	
	
All	research	studies	listed	in	[1]	can	be	found	below	in	Appendix	1.	

Software	design	
	
This	section	discusses	the	first	two	fundamental	building	blocks	of	software	development	
that	should	always	be	on	the	CTO’s	radar.		
	
These	basic	building	blocks	represent	a	minimum	set	of	practices	for	software	development	
and	IT	departments.		
	
They	are	basic	in	the	sense	that	ignoring	them	should	be	considered	professional	negligence	
and	in	the	sense	that	they	all	are	necessary,	but	not	sufficient.	
	
They	represent	the	minimum	in	the	sense	that	the	list	only	includes	practices	that	
conclusive	scientific	research	has	proven	true	and	practices	that	are	currently	accepted	as	
industry	standards.	Trending	or	cutting-edge	practices,	whose	validity	is	still	debatable,	are	
explicitly	marked	as	such	to	avoid	confusion.	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

4	

While	some	of	the	practices	presented	here	and	in	the	coming	paragraphs	may	seem	
obvious,	most	organisations	do	not	adopt	them	either	properly	or	at	all.	Most	common	
mistakes	include:	
	

• failing	to	translate	correctly	the	theory	into	practice;	
• focusing	on	secondary	aspects	while	missing	the	fundamentals;	
• applying	over-engineered	and	overly	complicated	solutions;	and	
• overestimating	the	importance	of	tools	and	ignoring	the	importance	of	skills,	

discipline,	and	social	aspects.	
	
1)	Software	design:	Effectiveness	of	modularisation	and	design	patterns	
	
Scientific	research	
	
A	study	on	the	effectiveness	of	modularisation,	whose	analysis	included	three	large	open-
source	projects,	has	shown	that	current	modularisation	techniques	make	developers	work	
more	effectively	because	the	techniques	reduce	the	time	needed	to	make	changes	(see	
chapter	20	in	[1]).	
	
Three	research	studies,	which	included	experiments	with	professional	programmers,	have	
shown	strong	empirical	evidence	that	design	patterns	and	design	principles	together	can	
help	improve	software	quality	and	productivity	in	a	maintenance	context	(see	chapter	21	in	
[1]).	The	positive	effect	during	initial	development	has	yet	to	be	researched.	
	
The	scientifically	demonstrated	conclusion	is	that	good	design	effectively	increases	
productivity	and	quality.	
	
The	list	of	conclusive	studies	on	this	topic	in	[1]	is	available	below	in	Appendix	2.		
	
Industry-recommended	practice	
	
Good	modularisation	and	use	of	design	patterns	in	addition	to	basic	design	principles	are	
industry-recommended	practices	because	they	have	a	positive	impact	on	productivity	and	
quality	(see	Fact	20	and	Fact	52	from	[2]).	
	
	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

5	

Are	you	doing	it?	
	
A	careful	inspection	of	the	source	code,	design,	architecture,	and	repository	history	can	
produce	a	definitive	answer	to	this	question.	A	faster	and	indirect	way	of	assessing	the	
situation	is	to	look	for	these	clues:	
	

• Is	it	increasingly	time-consuming	and	difficult	to	make	changes	to	the	code	and	add	
new	features?	

• Is	it	difficult	to	add	new	features	or	to	implement	feature	changes	without	adding	
new	bugs	to	existing	parts	of	the	system?	

• Do	new	team	members	require	a	substantial	amount	of	time	to	become	familiar	
with	the	code	base	and	become	productive,	and	is	that	time	constantly	increasing?	

	
If	you	observe	two	or	more	of	these	problems,	it’s	likely	that	you	do	not	have	good	design	
practices	properly	in	place.	Ask	yourself:	do	developers	have	the	time	to	practice	good	
design?	Do	they	have	the	experience	and	skills	to	do	that?	Do	business	people	and	
managers	understand	the	business	impact	of	good	design	and	act	accordingly?	
	
What	good	looks	like	
	
Where	good	design	modularisation	is	in	place	and	basic	design	principles	and	design	pattern	
are	properly	adopted:	
	

• The	effort	required	to	add	new	features	and	make	changes	decreases	over	time.		
• Code	is	easy	to	understand.	
• Implementation	of	a	single	change	request	requires	changes	to	a	limited	number	of	

modules.		
• There	are	only	few	dependencies	between	modules.	
• Each	module	depends	only	on	a	limited	number	of	other	modules.	

	
As	a	consequence,	the	defects	in	the	code	tend	to	be	fewer	and	under	control.	
	
Next	actions	
	
Here	are	a	few	things	you	can	do	to	improve	this	practice	in	your	organisation:	
	

• You	can	ask	your	senior	developers	and	tech	leads	to	work	together	to	assess	the	
current	state	of	the	code	base	in	relation	to	modularisation	and	design	principles	
and	patterns,	and	to	produce	a	list	of	recommendations.	
You	can	also	ask	them	to	organise	internal	training	for	developers.	
You	can	facilitate	a	dialogue	between	your	tech	leaders,	business	people,	and	
managers	to	explore	the	business	consequences	of	design	practice,	share	the	current	
status	in	different	products	code-base,	and	explore	various	tactical	and	strategic	
options.	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

6	

	
How	we	can	help	
	

• We	can	assess	your	code	base	and	software-engineering	practices	with	the	
involvement	of	your	tech	leaders	to	produce	a	list	of	recommendations	and	an	
action	plan.	

• We	can	deliver	one	of	our	most	successful	training	courses	to	train	your	developers:	
Agile	Object-Oriented	Bootcamp.		

• We	can	run	a	session	with	your	tech	and	business	leaders	about	the	business	impact	
of	technical	decisions	and	facilitate	a	meeting	to	explore	the	way	forward.	

	
Do	you	want	to	know	more	on	the	subject?		
	
Here	are	some	suggested	readings:	
	

• Refactoring	to	Patterns	by	Joshua	Kerievsky	
• Clean	Code:	A	Handbook	of	Agile	Software	Craftsmanship	by	Robert	C.	Martin	
• Refactoring:	Improving	the	Design	of	Existing	Code	by	Martin	Fowler	et	al.	
• Agile	Software	Development:	Principles,	Patterns,	and	Practices	by	Robert	C.	Martin	
• Agile	Principles,	Patterns,	and	Practices	in	C#	by	Robert	C.	Martin	
• Patterns	of	Enterprise	Application	Architecture	by	Martin	Fowler	

	
2)	Organisations	and	team	structure:	Conway’s	corollary	
	
Scientific	research	
	
Various	research	findings	conclude	that	organising	people	(teams,	departments,	and	
physical	location)	in	a	software	effort	in	a	way	that	resembles	the	organisation	and	structure	
of	the	software	(modularisation)	produces	a	better	result	than	when	they	differ.	This	is	
because	it	ensures	a	strong	relationship	between	social	and	software	structures.	The	
definition	of	“better”	here	is:	
	

• sustaining	high	levels	of	productivity	while	
• maintaining	software	quality.	

	
Two	of	these	research	studies	looked	at	commercial	software	development,	one	of	which	
was	Microsoft	Windows	Vista.	Five	analysed	large	open-source	projects	such	as	PostgreSQL	
and	Apache.	
	
The	list	of	research	studies	on	this	topic	taken	from	[1]	is	available	in	Appendix	3	below.	
	
	
	
	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

7	

Industry-recommended	practice	
	
Current	industry-recommended	practice	for	aligning	the	organisation	of	people	with	
software	structure	is	to	organise	or	re-organise	both	software	structure	and	people	around	
a	product.	
	
This	means	having	at	least	the	IT	team	fully	dedicated	to	a	product,	and	the	code	base	
organised	primarily	around	that	product.		
	
Preferably,	product	managers,	experts,	and	business	people	are	also	organised	around	the	
product,	together	with	the	IT	people.	
	
From	a	technical	and	code-base	point	of	view,	the	most	popular	approaches	to	dealing	with	
commonalities	among	different	products	are	1)	a	shared	platform	or	2)	an	internal	open-
source	model	(each	product	team	makes	available	parts	of	its	code	base	to	other	internal	
product	teams	that	can	reuse	them	and	contribute	to	them).	
	
Some	of	the	well-known	and	successful	industry	examples	of	the	practice	described	in	this	
paragraph	are	Amazon’s	two-pizza	teams,	Apple	product	teams,	Spotify's	tribes,	Valve’s	
cabal	system,	Scrum’s	team	structure,	and	LeSS	(large-scale	scrum)	team	structure.	
	
In	the	past,	the	aim	to	reduce	costs	often	lead	to	outsourcing	and	de-localisation,	
misaligning	the	organisation	of	people	and	the	software	structure.	The	negative	effects	of	
this	approach	often	created	additional	costs	that	largely	outweighed	the	promised	savings.	
	
Nowadays,	even	IT-outsourcing	pioneers	GE	and	GM	are	taking	software	development	back	
in-house.	Jim	Fowler,	former	CIO	of	GE	Power	&	Water	and	now	GE	Capital	CIO,	says	that	GE	
is	getting	better-quality	code	and	higher	throughput	using	internal	staff	than	it	did	with	
contract	resources.	Fowler	sees	that	in	measures	such	as	fewer	tickets	for	rework	on	post-
production	code	built	by	GE-badged	employees.	He	doesn't	blame	GE’s	software-
development	partners	for	that	difference	in	quality	but	sees	it	as	a	natural	outcome	of	small	
and	agile	employee	teams	better	understanding	business	needs,	and	each	employee	
knowing	that	they	will	be	the	person	who	will	be	there	in	the	long	term	to	deal	with	any	
problems	(InformationWeek).	
	
GM	CIO	Randy	Mott	has	said,	“IT	has	become	more	pervasive	in	our	business	and	we	now	
consider	it	a	big	source	of	competitive	advantage”	(The	Economist).	
	
Are	you	doing	it?	
	
If	you	have	stable,	cross-functional,	multidisciplinary	teams,	each	built	around	a	single	
product	and	each	of	which	includes	all	people	required	for	the	ideation,	development,	
operation,	and	maintenance	of	the	product,	and	you	have	just	few	loosely	coupled	
dependencies	between	different	teams	then	yes,	you	are	doing	it.	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

8	

	
To	clarify,	functional	teams	and	departments	(i.e.,	having	a	QA	team,	a	BA	team,	a	PM	team,	
etc.),	component	teams,	and	matrix	organisations	all	substantially	violate	this	practice.	
	
Do	you	have	many	cross-team	dependencies?	Do	these	dependencies	and	different	
priorities	of	different	teams	make	it	difficult	to	plan	for	a	product?	Are	dependencies	
causing	lot	of	overhead	in	planning	and	execution?	Can	emergencies	or	delays	faced	by	one	
team	cause	a	huge	ripple	effect	on	other	product	teams?	Do	cross-team	dependencies	make	
it	difficult	to	test	a	product	and	declare	it	done,	and	is	it	difficult	to	plan	its	release	into	
production?	
	
If	you	answered	yes	to	two	or	more	of	these	questions	then	no,	you	are	not	doing	it	
properly.	
	
What	good	looks	like	
	
Teams	and	architecture	are	organised	around	a	product,	team	membership	is	stable	(i.e.,	
members	don’t	change	teams	for	18	months),	and	team	members	are	all	at	least	in	the	
same	time	zone	and	preferably	colocated.	Special	attention	and	effort	is	made	to	avoid	and	
reduce	cross-team	dependencies.	
	
All	product	teams	of	the	company	align	around	common	goals	and	strategic	directions	and	
are	capable	of	helping	each	other	and	spotting	possible	synergies	while	maintaining	a	level	
of	autonomy	that	enables	speed.	
	
Next	actions	
	
Here	few	things	you	can	do	to	improve	this	practice	in	your	organisation:	
	

• Ask	all	employees	working	on	a	product	to	draw	a	value-stream	map	of	the	product	
delivery	from	concept	to	cash	and	analyse	delays	and	problems	where	work	is	
handed	over	to	different	teams	and	departments.	

• Experiment	with	a	small	cross-functional	team	when	you	have	the	opportunity	to	
deliver	a	new	product.	

	
How	we	can	help:	
	

• Our	agility	analysis	can	assess	your	status,	identify	strengths	and	pain	points,	and	
recommend	suggested	improvements	and	options	for	implementing	them.	

• We	can	deliver	a	half-day	Organisational	Agility	for	Executives	workshop	to	decision	
makers	and	representatives	from	different	functions	to	explore	possibilities	and	
ways	to	increase	the	alignment	of	people	organisation	and	software	structure	
around	products.	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

9	

We	can	facilitate	a	meeting	with	leaders	and	managers	involved	in	a	specific	
software	effort	and	facilitate	a	discussion	on	a	better	alignment	around	the	product.	

	
	
Do	you	want	to	know	more	on	the	subject?		
	
Here	are	some	suggested	readings:	
	

• Agile	IT	Organisation	Design:	For	Digital	Transformation	and	Continuous	Delivery	by	
Sriram	Narayan	

• Lean	Enterprise:	How	High	Performance	Organizations	Innovate	at	Scale	by	Jez	
Humble,	Joanne	Molesky,	and	Barry	O'Reilly	

• “Exploring	the	Duality	Between	Product	and	Organizational	Architectures:	A	Test	of	
the	‘Mirroring’	Hypothesis”	by	Alan	MacCormack,	John	Rusnak,	and	Carliss	Baldwin	
(Harvard	Business	School	working	paper)	

• “Product-Centric	Development	Is	a	Hot	New	Trend”	by	Dave	West	et	al.	(Forrester	
report)	

• “Maverick	Research:	Lessons	Learned	From	Case	Studies	for	Ultralean	Development”	
by	Ray	Valdes	(Gartner	report)	

• “Technical	Dependency	Challenges	in	Large-Scale	Agile	Software	Development”	by	
Nelson	Sekitoleko	et	al.	(in	Agile	Processes	in	Software	Engineering	and	Extreme	
Programming)	

Version-control	systems	and	build	automation	
	
This	section	introduces	the	third	and	fourth	fundamental	building	blocks	of	software	
development	done	right,	which	the	CTO	needs	to	be	aware	of.	
	
The	vast	majority	of	organisations	that	do	professional	software	development	implements	
these	two	rules.	In	a	sense,	these	two	practices	mark	the	distinction	between	
novice/amateur	software	development	and	professionals.	
	
The	benefit	of	these	practices	is	so	evident	that	you	won’t	find	any	scientific	research	done	
to	prove	the	obvious.	Indeed,	they	are	the	first	two	points	Spolsky	makes	in	[3].	
	
On	the	other	hand,	many	organisations	don't	have	a	good	understanding	of	what	good	looks	
like	for	these	two	practices	and	sometimes	adopt	over-engineered	solutions	while	missing	
key	aspects.	
	
	
	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

10	

3)	Source-code	repository	a.k.a.	a	version-control	system	
	
Industry-recommended	practice	
	
Use	of	a	source-code	repository	(e.g.,	SVN,	Git,	Visual	SourceSafe,	Rational	ClearCase,	
Mercurial,	Perforce,	TFS)	is	a	standard	practice	to	support	collaboration	among	developers	
working	on	a	shared	code	base	and	to	ensure	that	no	code	gets	lost.	
	
Are	you	doing	it?	
	
You	are	doing	it	when:	
	

• You	store	all	production	source	code	that	you	create	in	a	source-code	repository.	
• You	build	all	binaries	only	from	code	in	the	source-code	repository.	
• Developers	check	out	(get	or	pull)	code	at	least	once	per	day	before	starting	to	work	

and	check	in	(commit	or	push)	code	at	least	once	per	day	before	the	end	of	the	day.	
	
What	good	looks	like	

This	is	where	most	mistakes	are	found.	

A	source-code	repository	should	be	auto-contained.	That	means	that	all	source	code,	
configuration	files,	and	database	schema	files	required	to	build	an	application	are	contained	
in	one	single	repository	and	a	build	neither	requires	nor	references	any	code	from	other	
repositories.	

In	the	best	organisations,	developers	check	out	and	check	in	code	many	times	per	day,	
typically	every	15	minutes	or	every	hour.	The	most	effective	way	to	deal	with	merge	
conflicts	is	to	avoid	them.	Frequent	check-ins	and	check-outs	have	many	other	benefits.	

When	using	distributed	version-control	systems	(e.g.,	Git,	BitKeeper,	Mercurial,	Bazaar,	etc.)	
to	work	with	remote	teams	or	remote	team	members	or	when	simply	using	a	source-code	
repository	hosted	in	the	cloud,	make	sure	that	everyone	can	continue	to	work	in	the	event	
of	an	interrupted	connection	to	the	repository.	This	is	one	of	the	main	reasons	to	have	a	
distributed	version-control	system	instead	of	a	traditional	version-control	system;	if	you	are	
not	taking	advantage	of	it,	you	should	wonder	why	you	are	using	a	distributed	system	and	
paying	the	price	of	its	additional	complexity.	

It's	common	and	convenient	to	use	a	separate	repository	for	binaries	(e.g.,	JFrog’s	
Artifactory,	Sonatype’s	Nexus)	to	store	third-party	binaries	which	must	be	treated	
differently	and	for	binaries	an	organization	itself	produces	such	as	releases	and	nightly	
builds.	

	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

11	

Next	actions	
	

• Ask	tech	leads	and	teams	to	review	the	status	of	all	source-code	repositories	in	the	
organisation	and	to	verify	whether	they	are	auto-contained	or	not,	and	ask	them	to	
suggest	ways	to	reorganise	them	in	order	to	make	them	auto-contained.	

• If	you	are	using	a	distributed	version-control	system,	simulate	an	interruption	in	the	
connection	to	the	remote	repository	and	verify	that	all	teams	are	able	to	continue	to	
work	normally,	get	and	push	code	on	the	local	repository,	and	do	all	the	related	
work	(e.g.,	integrate,	test,	release).	

• Ask	tech	leads	and	teams	to	review	the	frequency	of	commits/check-ins	in	the	
source-code	repository.	Ask	them	what	can	be	done	to	ensure	that	everyone	
performs	commits/check-ins	at	least	once	per	day	and	what	can	be	done	to	help	
developers	to	check	in	more	frequently,	ideally	every	15	minutes.	

	
How	we	can	help:	
	

• We	can	analyse	your	engineering	and	coding	practices	to	assess	your	status,	identify	
strengths	and	pain	points,	and	recommend	improvements	and	options	for	
implementing	them.	

• We	can	deliver	the	Agile	Development	Practices	training	session	to	help	developers	
work	in	short	stints	with	modern	approaches.	

	
4)	Build	automation	
	
Industry-recommended	practice	
	
A	build	of	a	software	product	is	usually	automated	with	a	batch	script.	An	automated	build	
runs	as	a	single	step	that	doesn’t	require	any	manual	intervention.	
	
The	script	does	a	full	check-out	from	scratch	of	the	latest	source-code	snapshot,	and	
rebuilds	every	line	of	code.	The	script	optionally	creates	a	deployment	or	installation	
package.	A	dedicated	build	server	is	used	to	create	release	candidates.	
	
The	automatic	build	script	can	typically	run	both	on	a	developer	machine	and	on	the	build	
server.	The	automatic	build	is	run	at	least	once	per	day,	for	example	at	night	in	the	build	
server.	
	
Are	you	doing	it?	
	
You	are	doing	it	when	you	have	daily	or	nightly	builds	automatically	created	in	the	build	
server	and	when	developers	can	get	all	the	code	they	need	to	work	on	a	new	computer	by	
simply	running	the	build	script	on	the	machine.	
	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

12	

The	automatic	build	script	is	versioned	in	the	source-code	repository	and	works	in	one	step,	
without	the	need	for	manual	intervention	or	tweaking.	It	only	needs	a	connection	to	the	
source-code	repository,	the	repository	client	tool,	and	local	installation	of	tools	required	to	
build	the	source	code.	
	
What	good	looks	like	
	

• The	automatic	build	script	is	stable	and	run	smoothly	on	different	machines,	for	
many	different	users	and	on	different	build	servers.	

• The	automatic	build	is	fast	and	provides	clear	error	messages	that	help	identify	the	
source	of	a	problem.	

• The	automatic	build	is	run	for	every	developer’s	check-in,	typically	many	times	per	
day.	

	
Next	actions	
	

• Ask	new	developers	that	join	the	organisation	how	difficult	or	easy	it	was	to	set	up	
the	local	environment	and	run	the	build.	

• Rotate	the	responsibility	to	support	the	automatic	build	and	ask	how	difficult	the	
handover	is	and	how	much	time	is	required	to	support	the	automatic	build.	

• Ask	IT	operations	and	developers	to	review	the	infrastructure	(build	servers,	version-
control-system	servers,	file	servers,	developers’	machines,	networks,	accounts,	etc.)	
and	to	identify	and	remove	complexities	that	make	the	automatic	build	more	fragile	
and	less	stable.	

	
How	we	can	help:	
	

• We	can	analyse	your	engineering	and	coding	practices	to	assess	current	status,	
identify	strengths	and	pain	points,	and	recommend	improvements	and	options	for	
implementing	them.	
We	can	deliver	the	Introduction	to	Continuous	Delivery	training	session	that,	among	
other	things,	provides	an	overview	of	build	automation.	

	
Do	you	want	to	know	more	on	these	subjects?	
	
Here	are	some	suggested	readings:	
	

• Continuous	Integration:	Improving	Software	Quality	and	Reducing	Risk	by	Paul	M.	
Duvall,	Steve	Matyas,	and	Andrew	Glover	

• “Are	you	taking	advantage	of	your	Distributed	Version	Control	System?”	by	Luca	
Minudel	(blog	post)	

	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

13	

Iterative	development	
	
Iterative	software	development	is	the	fifth	fundamental	building	block	of	software	
development	done	right	and	should	always	be	on	the	CTO’s	radar.	
	
Iterative	development	is	a	stepping	stone	to	many	modern	practices.	Like	the	previous	two	
practices,	it	also	marks	the	distinction	between	novice/amateur	and	professional	software	
development.	
	
5)	Iterative	development	
	
Industry-recommended	practice	
	
Iterative	development	first	appeared	as	an	experiment	in	1957.	In	the	1990s,	it	became	
common	and	a	CHAOS	report	in	1998	contained	statistics	from	the	industry	that	showed	the	
advantages	of	Iterative	over	waterfall	development.	In	2000,	the	US	Department	of	Defence	
stated	a	clear	preference	for	Iterative	development.		
	
Iterative	development	was	a	stepping	stone	on	the	way	to	modern	practices	such	as	time-
boxed	iterations/sprints	(e.g.,	XP	and	Scrum),	pull	systems	and	continuous	flow	(e.g.,	lean	
software	development	and	kanban),	and	continuous	delivery.	
	
Waterfall	and	its	evolutions	and	extensions	such	as	V-model	development	are	inefficient	in	
the	vast	majority	of	circumstances	and	should	be	considered	obsolete.	On	the	other	end	of	
the	spectrum,	“just	do	it”	approaches	are	inadequate	for	organisations	with	more	than	
three	employees.	Adopting	one	of	these	approaches	should	be	considered	professional	
negligence,	unless	the	exception	is	justified	by	empirical	data	(e.g.,	up-front	estimation	
errors	of	less	than	10%	for	90%	of	estimates,	users	enthusiastically	accept	released	features,	
quality	is	good,	and	software-development	performance	including	integration	and	testing	is	
at	least	as	efficient	as	the	competitors’).	The	burden	of	proof	falls	on	the	proponent	of	the	
exception.	
	
Are	you	doing	it?	
	
Iterative	development	is	the	development	or	evolution	and	maintenance	of	a	new	software	
product	through	a	sequence	of	iterations.	Every	iteration	includes	activities	such	as	
requirements	analysis,	design,	implementation,	and	testing.	Each	iteration	delivers	new	
functionality	or	evolves	existing	functionalities	and	incorporates	lessons	from	previous	
iterations.	
	
Iterative	development	in	its	simplest	form	can	have	iterations	that	differ	in	duration.	The	
practice	can	also	have	activities	that	relate	to	a	single	feature	(such	as	requirements	
analysis,	design,	implementation,	or	testing)	that	span	multiple	consecutive	iterations.	
	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

14	

What	good	looks	like	
	
Iteration	length	is	fixed	for	every	iteration	and	varies	from	one	month	to	one	week	—	and	
the	shorter,	the	better.	
	
Every	iteration	is	self-contained,	in	the	sense	that	all	activities	required	to	add	or	evolve	a	
feature,	from	detailed	analysis	of	requirements	to	testing,	are	carried	out	and	completed	
during	the	iteration,	including	acceptance	of	the	feature	by	the	business	stakeholders,	
requester,	or	users.	
	
The	best	teams	are	capable	of	releasing	completed	features	into	production	after	every	
iteration.	The	business	can	decide	to	release	a	feature	or	not,	but	if	business	decides	to	
release	it,	it	can	enter	production	with	one	click,	because	features	completed	after	every	
iteration	are	really	ready	to	be	released.	
	
The	best	teams,	once	they	achieve	the	ability	to	successfully	run	one-week-long	iterations,	
can	move	to	continuous-flow	development	or	pull	systems	such	as	lean	software	
development	and	kanban	instead	of	moving	to	shorter	iterations.	Teams	that	practice	
continuous-flow	development	without	being	able	to	successfully	practice	iterative	
development	in	one-week	iterations	don't	belong	to	this	category.	
	
Next	actions	
	
Ask	team	members,	stakeholders,	and	managers	to	individually	draft	the	process	from	
requirement	analysis	to	release.	Observe	collectively	the	differences	among	processes	
designed	by	different	people	and	among	different	iteration	goals	(bug	fixing,	feature	change	
or	evolution,	new	feature	for	a	new	product,	emergency	bug	fix,	etc.)	and	discuss	which	
differences	are	beneficial	and	which	can	be	eliminated.	Observe	and	note	similarities,	and	
discuss	how	well	those	elements	of	the	process	serve	their	purpose.	
	
How	we	can	help:	
	

• We	can	analyse	your	way	of	working	to	assess	current	status,	identify	strengths	and	
pain	points,	and	recommend	improvements	and	options	for	implementing	them.	
We	can	deliver	coaching	or	training	based	on	the	result	of	the	assessment.	

	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

15	

Test	and	delivery	automation	and	continuous	integration:	Current	
trends	
	
This	section	introduces	three	trending	practices	in	software	development	that	should	
always	be	on	the	CTO’s	radar.	
	
These	practices	are	implemented	by	many	organisations,	especially	by	the	most	successful	
and	innovative	ones.	Most	respected	and	recognized	professionals	in	software	development	
consider	these	practices	and	related	skills	essential.	
	
Unlike	for	previous	items	in	this	booklet,	no	scientific	studies	have	proven	the	effectiveness	
of	these	practices	compared	to	alternatives;	nor	are	they	implemented	by	the	vast	majority	
of	the	organisations	that	do	professional	software	development.	
	
For	these	reasons,	these	practices	cannot	be	considered	as	fundamental	building	blocks	of	
software	development,	and	failure	to	adopt	these	practices	cannot	be	considered	a	CTO’s	
professional	negligence.	Doing	that	would	be	confusing	popularity	with	scientific	evidence	
and	craftsmanship.	
	
A	CTO,	in	regard	to	these	practices,	has	the	responsibility	to	assess	(explore	these	practices	
with	the	goal	of	understanding	their	potential	impact	on	the	organisation)	and	run	trials	
(understand	how	to	build	the	capability	to	adopt	those	practices	and	experiment	with	them	
where	risk	is	acceptable).	Failure	to	do	this	may	be	considered	professional	negligence.	
	
6)	Test	automation	
	
Industry-trending	practice	
	
The	current	industry	trend	is	to	invest	in	test	automation,	including	acceptance	testing,	
integration	testing,	and	unit	testing	—	that’s	test-driven	development.	The	industry’s	
motivation	to	adopt	and	practice	test	automation	is	to	reduce	the	time	required	by	
repetitive	manual	testing	and	to	reduce	the	human	error	in	manual	testing	tasks.	
	
If	your	competitor	has	fewer	defects	and	fewer	incidents	in	production	while	releasing	new	
features	more	quickly	and	more	often,	it's	likely	that	your	competitor	has	found	a	way	to	
exploit	automatic	testing.	It's	very	likely	that	throwing	more	testers,	cutting	regression	
testing,	or	reducing	the	frequency	of	releases	won’t	help	you	keep	up.	
	
The	following	picture,	inspired	by	Brian	Marick’s	test	matrix,	classifies	different	types	of	
testing	and	shows	which	you	can	automate.	As	you	see,	there’s	great	potential	in	test	
automation.	
	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

16	

 
	
Are	you	doing	it?	
	
When	you	are	automating	tests,	you	have	a	suite	of	unit,	integration,	and	acceptance	tests	
that	automatically	run	and	report	the	results	in	few	minutes.	The	suite	takes	care	of	the	
setup	of	the	initial	conditions	and	of	the	verification	of	the	results.	No	manual	intervention	
is	needed.	
	
The	test	suite	runs	after	every	build,	which	is	triggered	by	changes	pushed	by	a	developer	to	
the	source-code	repository.	
	
Creation	of	deployment	packages	for	candidate	releases	and	releases	into	production	are	
subordinate	to	a	positive	result	in	the	automatic	tests.	
	
7)	Deployment	automation	
	
Industry-trending	practice	
	
Similar	to	build	automation,	deployment	automation	can	be	implemented	with	a	batch	
script	that	automates	the	deployment	of	the	software	system	in	test,	staging,	and	
production	environments.	
	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

17	

The	script	runs	in	a	single	step	and	requires	no	manual	intervention.	The	system	update	is	
automatically	delivered	with	all	the	required	changes	including,	for	example,	database	
schema	changes	and	configuration	changes.	
	
The	same	script	is	used	for	all	environments	so	that	it	gets	implicitly	tested	in	test	and	
staging	environments	before	being	used	for	the	production	environment.	
	
Are	you	doing	it?	
	
You	are	doing	deployment	automation	when	the	deployment	package	created	by	your	build	
includes	the	right	version	of	the	automated	deployment	script	and	when	developers	and	
testers	and	IT	operations	can	deploy	any	version	of	the	software	on	their	computers	or	to	
any	test	and	staging	environment	simply	by	running	the	deployment	script.	
	
The	automatic	deployment	script	is	versioned	in	the	source-code	repository,	and	it	simply	
works	in	one	step,	without	need	for	manual	intervention	or	tweaking	to	make	it	run.	It	only	
needs	access	to	the	local	system,	to	the	binaries	included	in	the	deployment	package,	and	
the	minimum	privileges	required	to	make	the	changes	needed	to	the	system.	
	
When	the	deployment	script	execution	ends,	the	system	is	up	and	running	without	any	
manual	intervention	or	tweaking.	
	
Similar	to	an	automated	build,	automatic	deployment	runs	at	least	once	per	day	in	test	or	
staging	environments.	
	
	
What	good	looks	like	
	
In	the	best	organisations,	the	automatic	deployment	runs	in	the	automatic-test	
environment	after	every	developer’s	check-in	as	part	of	the	continuous-integration	process,	
typically	many	times	per	day.	
	
When	a	deployment	fails,	the	automatic-deployment	script	leaves	the	system	in	a	known	
state.	Ideally,	the	deployment	either	succeeds	or	rolls	back	to	the	previous	version;	in	any	
case,	it	never	leaves	the	system	in	an	unknown	or	not-working	state.	
	
The	architecture	of	the	system	and	the	automatic-deployment	script	are	conceived	in	a	way	
that	the	deployment	does	not	interrupt	the	work	of	users	using	the	system	at	the	moment	
of	the	update.	
	
	
	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

18	

8)	Continuous	integration	
	
Industry-trending	practice	
	
Martin	Fowler	in	part	defined	continuous	integration	as	a	software-development	practice	in	
which	team	members	frequently	integrate	their	work,	at	least	daily.	An	automated	build,	
including	automated	tests,	verifies	each	integration	to	detect	integration	errors	as	quickly	as	
possible.	Fowler	first	posted	about	continuous	integration	in	2000,	nine	years	after	Grady	
Booch	first	named	the	practice	in	1991.	
	
Continuous	integration	is	often	confused	with	having	a	continuous-integration	server	tool	—	
but	the	important	part	of	continuous	integration	is	to	frequently,	at	least	daily,	merge	the	
code	on	the	mainline	(also	known	as	the	head	or	trunk)	of	the	source-code	repository	and	
quickly	fix	builds	and	tests	that	fail.	
	
Are	you	doing	it?	
	
Per	the	definition,	you	are	using	continuous	integration	when	all	developers	frequently	
integrate	their	own	work	and	an	automated	build	that	includes	automated	tests	verifies	
each	integration.	
	
If	you	are	using	feature	branches,	if	you	have	big	and	infrequent	merges,	or	if	the	build	run	
remains	broken	for	hours,	you	are	not	doing	it.	
	
What	good	looks	like	
	
In	the	best	organisations,	integration	is	typically	done	many	times	per	day,	every	15	minutes	
or	every	hour.	When	the	integration	fails,	either	it	is	fixed	within	a	few	minutes	or	the	
changes	that	brought	on	the	failure	are	rolled	back.	
	
Developers	commit	code	on	the	mainline,	practising	trunk-based	development	and	related	
techniques.	
	
	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

19	

The	following	modified	version	of	a	ThoughtWorks	image	shows	how	continuous	integration	
builds	on	top	of	other	practices	presented	in	this	booklet.	

 
	
The	following	image	from	Jim	Highsmith’s	Adaptive	Leadership:	Accelerating	Enterprise	
Agility	shows	how	continuous	integration	builds	on	top	of	iterative	development	and	how	it	
enables	other	practices	(continuous	delivery	and	continuous	deployment)	that	have	
strategic	and	business	impact.	
	

	
Next	actions	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

20	

	
Ask	your	tech	leads	to	assess	the	status	of	your	deployment	automation,	testing	
automation,	and	continuous	integration	and	to	identify	the	gap	between	what	they	have	
observed	and	what	is	described	here	in	the	“What	good	looks	like”	subsection.	Ask	them	to	
identify	actions	to	bridge	the	gap.	
	
How	we	can	help:	
	

• We	can	assess	your	continuous-integration	status,	identify	strengths	and	pain	points,	
and	recommend	improvements	and	options	for	implementing	them.	

• Test-automation	techniques	are	difficult	to	learn	and	master.	They	involve	a	steep	
learning	curve	that	requires	skills,	maturity,	and	time,	particularly	when	developers	
are	entrenched	in	the	“code	then	test”	paradigm.	In	my	experience,	hands-on	
training	is	fundamental	to	climbing	the	learning	curve	and	will	let	you	avoid	many	
costly	mistakes.	

• We	can	deliver	the	Agile	Testing	and	QA	Training	session	to	help	developers	and	
testers	to	automate	tests	and	practice	test-driven	development.	

	
Do	you	want	to	know	more	on	these	subjects?		
	
Here	are	some	suggested	readings:	
	

• Continuous	Integration:	Improving	Software	Quality	and	Reducing	Risk	by	Paul	M.	
Duvall,	Steve	Matyas,	and	Andrew	Glover	

• Agile	Testing:	A	Practical	Guide	for	Testers	and	Agile	Teams	by	Lisa	Crispin	and	Janet	
Gregory	

• More	Agile	Testing:	Learning	Journeys	for	the	Whole	Team	by	Janet	Gregory	and	Lisa	
Crispin	

• Test-Driven	Development:	By	Example	by	Kent	Beck	
• Growing	Object-Oriented	Software,	Guided	by	Tests	by	Steve	Freeman	and	Nat	Pryce	
• Specification	by	Example:	How	Successful	Teams	Deliver	the	Right	Software	by	Gojko	

Adzic	
	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

21	

Continuous	delivery	and	infrastructure	as	code:	Cutting-edge	trends	
	
This	is	the	last	section	about	practices	in	software	development	that	CTOs	should	always	
have	on	their	radar.	
	
This	section	is	dedicated	to	two	trending	practices	in	IT.	As	these	practices	are	relatively	
new,	you	won’t	yet	find	scientific	research	on	their	effectiveness.	Nor	are	these	practices	
sufficiently	broadly	adopted	in	the	industry	to	be	considered	fundamental	building	blocks	of	
software	development	done	right.	
	
Instead,	these	two	practices	are	adopted	by	top-notch	digital	and	Internet	giants	and	by	
some	of	the	best	digital	companies.	
	
Since	these	practices	build	on	top	of	practices	presented	in	previous	sections,	once	a	CTO	
manages	to	reach	a	good	implementation	of	those	building	blocks	(look	at	their	“What	good	
looks	like”	subsections)	he/she	should	assess	(explore	with	the	goal	of	understanding	the	
potential	impact	on	the	organisation	of	these	practices)	and	run	trials	(understand	how	to	
build	the	capability	to	adopt	those	practices	and	experiment	with	them	in	circumstances	
where	risk	is	acceptable)	for	these	additional	practices.	
	
9)	Continuous	delivery	and	DevOps	
	
Industry-trending	practice	
	
Companies	such	as	Amazon,	Google,	Facebook,	Flickr,	Spotify,	Etsy,	SAP,	and	HP	are	
adopting	continuous	delivery	(CD)	and	DevOps.	
	
The	business	impact	of	CD	and	DevOps,	the	growing	number	of	nodes	and	complexity	of	
production	systems,	and	the	virtualisation	of	production	servers	and	the	cloud	are	all	driving	
the	adoption	of	CD	and	DevOps.	
	
Latest	State	of	DevOps	Report	2017	from	Puppet	and	DevOps	Research	and	Assessment,	is	
based	on	more	than	27,000	survey	responses	in	the	past	six	years.	That	report	classifies	as	
low	IT	performers	those	companies	whose	deploy	frequency	is	once	per	week	and	once	per	
month	or	less	frequent,	and	have	a	meant	time	to	recover	between	one	day	and	one	week.	
While	high	IT	performers	deploys’	into	production	are	46x	more	frequent,	lead	time	for	
changes	is	440x	faster,	and	change	failure	rate	is	5x	lower.	
	
Are	you	doing	it?	
	
According	to	the	definition,	you	are	doing	CD	when	your	software	is	deployable	throughout	
its	life	cycle,	starting	from	the	first	iteration/sprint	and	anytime	during	any	iteration/sprint.	
Furthermore,	your	team	prioritizes	keeping	the	software	deployable	over	working	on	new	
features,	and	anybody	can	get	fast,	automated	feedback	on	the	production	readiness	of	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

22	

their	systems	whenever	somebody	makes	a	change	to	them.	Finally,	you	can	perform	push-
button	deployments	of	any	version	of	the	software	to	any	environment	on	demand.	
	
What	good	looks	like	
	
The	two	most	common	mistakes	in	CD	and	DevOps	adoption	are	about	continuous	
integration	and	DevOps	itself.	
	
Many	organisations	approach	CD	with	a	fundamental	misunderstanding	of	continuous	
integration.	They	make	heavy	use	of	branches	in	the	source-code	repository	and	they	don't	
practice	trunk-based	development.	
	
The	other	fundamental	misunderstanding	is	about	DevOps.	Many	organisations	create	a	
DevOps	team	between	developers	and	IT	operations	—	but	DevOps	does	not	exist	at	all	as	
role.	It	is	really	about	a	deeper	collaboration	between	developers	and	IT	operations	in	which	
some	IT	people	move	into	developer	teams	and	some	developers	rotate	into	IT-operations	
teams.	
	
Releases	into	production	are	predictable,	safe,	regular	events	to	the	point	that	they	become	
non-events.	When	deadlines	approach,	people	are	relaxed.	
	
The	quality	of	code	released	into	production	is	good	and	IT	operations	are	not	in	constant	
fire-fighting	mode.	Even	when	showstopper	bugs	appear	in	production,	automated	
remediation	plans	make	problems	solvable	in	a	few	minutes	without	affecting	users	or	the	
business.	
	
Next	actions	
	

• Ask	your	tech	leads	to	review	the	continuous-integration	implementation	and	the	
trunk-based	development	practices	and	to	identify	gaps	and	plan	actions	to	remove	
them.	

• Ask	HR	to	review	the	DevOps	strategy	and	identify	ways	to	remove	the	DevOps	role	
in	favour	of	a	rotation	between	developers	and	IT	operations.	

	
How	we	can	help:	
	

• We	can	deliver	the	presentation	“Continuous	Delivery	Overview:	From	Continuous	
Integration	to	Continuous	Delivery	and	DevOps”.	
We	can	assess	your	CD	status,	identify	strengths	and	pain	points,	and	recommend	
improvements	and	options	for	implementing	them.	
We	can	deliver	CD	training	to	bring	developers,	IT	operations,	and	tech	leaders	to	a	
better	understanding	of	CD	and	help	them	learn	the	basics	to	drive	a	CD	
implementation.	
We	can	coach,	mentor,	and	train	developers	and	help	them	improve	the	continuous	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

23	

integration,	achieve	trunk-based	development,	improve	the	architecture	and	the	
design	of	the	product	code	base	to	make	it	testable,	configurable,	hot-deployable,	
and	compatible	with	remediation	plans.	

	
Do	you	want	to	know	more	on	these	subjects?		
	
Here	are	some	suggested	readings:	
	

• Continuous	Delivery	Overview	by	Luca	Minudel	
• Continuous	Delivery:	Reliable	Software	Releases	Through	Build,	Test,	and	Deployment	

Automation	by	Jez	Humble	and	David	Farley	
	
10)	Infrastructure	as	code	
	
Industry-trending	practice	
	
Infrastructure	as	code	is	a	practice	of	CD.	The	growth	of	virtualisation	and	the	cloud	
together	with	the	possibility	of	dynamic	resource	allocation	on	the	cloud	make	this	practice	
especially	important.	
	
Do	you	want	to	know	more	on	these	subjects?	Suggested	reading:		
	

• Infrastructure	as	Code:	Managing	Servers	in	the	Cloud	by	Kief	Morris	
	

	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

24	

Appendix	1:	Good	decision	making	and	10x	variations	in	productivity	
(references)	
	
Augustine,	N.R.	1979.	“Augustine’s	Laws	and	Major	System	Development	Programs.”	
Defense	Systems	Management	Review:	50–76.		
	
Boehm,	Barry	W.,	T.E.	Gray,	and	T.	Seewaldt.	1984.	“Prototyping	Versus	Specifying:	A	
Multiproject	Experiment.”	IEEE	Transactions	on	Software	Engineering	10(3):	290–	303.	
	
Boehm,	Barry	W.,	and	Philip	N.	Papaccio.	1988.	“Understanding	and	Controlling	Software	
Costs.”	IEEE	Transactions	on	Software	Engineering	14(10):	1462–1477.		
	
Boehm,	Barry,	et	al.	2000.	Software	Cost	Estimation	with	Cocomo	II.	Addison-Wesley.		
	
Card,	David	N.	1987.	“A	Software	Technology	Evaluation	Program.”	Information	and	
Software	Technology	29(6):	291–300.		
	
Curtis,	Bill.	1981.	“Substantiating	Programmer	Variability.”	Proceedings	of	the	IEEE	69(7):	
846.	
	
Curtis,	Bill,	et	al.	1986.	“Software	Psychology:	The	Need	for	an	Interdisciplinary	Program.”	
Proceedings	of	the	IEEE	74(8):	1092–1106.		
	
Cusumano,	Michael,	and	Richard	W.	Selby.	1995.	Microsoft	Secrets.	The	Free	Press.		
		
DeMarco,	Tom,	and	Timothy	Lister.	1985.	“Programmer	Performance	and	the	Effects	of	the	
Workplace.”	Proceedings	of	the	8th	International	Conference	on	Software	Engineering:	
268–272.		
	
DeMarco,	Tom,	and	Timothy	Lister.	1999.	Peopleware:	Productive	Projects	and	Teams	
(Second	Edition).	Dorset	House.		
	
Mills,	Harlan	D.	1983.	Software	Productivity.	Little,	Brown.		
	
Sackman,	H.,	W.J.	Erikson,	and	E.E.	Grant.	1968.	“Exploratory	Experimental	Studies	
Comparing	Online	and	Offline	Programming	Performance.”	Communications	of	the	ACM	
11(1):	3–11.	
	
Schlender,	Brenton.	1989.	“How	to	Break	the	Software	Logjam.”	Fortune,	September	25.	
	
Valett,	J.,	and	F.E.	McGarry.	1989.	“A	Summary	of	Software	Measurement	Experiences	in	
the	Software	Engineering	Laboratory.”	Journal	of	Systems	and	Software	9(2):	137–148.	
	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

25	

Weinberg,	Gerald	M.,	and	Edward	L.	Schulman.	1974.	“Goals	and	Performance	in	Computer	
Programming.”	Human	Factors	16(1):	70–77.		
	
	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

26	

Appendix	2:	Software	design,	modularisation	and	design	patterns	
(references)	
	
Oram,	Andy	and	Greg	Wilson,	eds.	2010.	Making	Software:	What	Really	Works	and	Why	We	
Believe	It.	O'Reilly	Media.		
	
Prechelt,	Lutz,	et	al.	2001.	“A	Controlled	Experiment	in	Maintenance	Comparing	Design	
Patterns	to	Simpler	Solutions.”	IEEE	Transactions	on	Software	Engineering	27(12):	1134–
1144.	
	
Prechelt,	Lutz,	et	al.	“Two	Controlled	Experiments	Assessing	the	Usefulness	of	Design	
Pattern	Documentation	in	Program	Maintenance.”	IEEE	Transactions	on	Software	
Engineering	28(6):	595–606.	
	
Unger,	Barbara,	Walter	F.	Tichy.	2000.	“Do	Design	Patterns	Improve	Communication?	An	
Experiment	with	Pair	Design.”	Workshop	on	Empirical	Studies	of	Software	Maintenance.	
http://www.ipd.uni-karlsruhe.de/Tichy/publications.php?id=149.	
	
Vokac,	Marek,	et	al.	2004.	“A	Controlled	Experiment	Comparing	the	Maintainability	of	
Programs	Designed	with	and	without	Design	Patterns	—	A	Replication	in	a	Real	
Programming	Environment.”	Empirical	Software	Engineering	9:	149–195.	
	
	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

27	

Appendix	3:	Organisations,	team	structure,	and	Conway’s	corollary	
(references)	
	
Bird,	C.,	et	al.	2008.	“Latent	Social	Structure	in	Open	Source	Projects.”	SIGSOFT	’08/FSE-16:	
Proceedings	of	the	16th	ACM	SIGSOFT	Symposium	on	Foundations	of	Software	Engineering:	
24–35.	
	
Cataldo,	M.,	et	al.	2006.	“Identification	of	Coordination	Requirements:	Implications	for	the	
Design	of	Collaboration	and	Awareness	Tools.”	Proceedings	of	the	20th	Conference	on	
Computer	Supported	Cooperative	Work:	353–362.	
	
Nagappan,	N.,	B.	Murphy,	and	V.	Basili.	2008.	“The	influence	of	organizational	structure	on	
software	quality:	An	empirical	case	study.”	Proceedings	of	the	30th	International	
Conference	on	Software	Engineering:	521–530.	
	 	



 
 

SmHarter Ltd. UK, London - Email info@smharter.com 
 

28	

About	the	author	
 

Luca Minudel is a Lean-Agile Coach & Trainer with 15 years of experience 
in Lean/Agile and 20+ in professional software delivery. 
 
He is passionate about agility, lean, complexity science, and co-creation. 
 
He contributed to the adoption of lean and agile practices by Ferrari's F1 
racing team. For ThoughtWorks he delivered training, coaching, 
assessments and organisational transformations in top-tier organisations in 

Europe and the United States. He worked as Head of Agility in 4Finance and worked as 
Lean/Agile Practice Lead, and Lean/Agile Coach in the banking sector. 
 
Luca is founder and CEO at SmHarter.com, the company that helps organisations turn their way 
of working into their competitive advantage. 
	
	


